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ABSTRACT 
 

The purpose of this study was to develop a wetland identification tool that makes use of 

freely available geospatial datasets to identify potential wetland locations at a spatial scale 

relevant for transportation corridor assessments.  The tool was developed to assist the Virginia 

Department of Transportation in wetland identification over large geographic regions.  Wetland 

identification is an integral part of many construction projects performed by state departments of 

transportation.  However, current methods for wetland identification in support of these activities 

are lacking in one or more of the following ways: inadequate use of ancillary data, little 

automation, failure to leverage freely available data, excessive computation times, high expense, 

or the requiring of software not typically available to state departments of transportation.   

 

This study addressed these limitations through development of a GIS-based wetland 

screening tool with freely available data and automated geoprocessing workflows to assist in 

wetland identification over large geographic regions.  The tool was designed as a screening tool 

able to identify potential wetland areas that would require further investigation by a trained 

wetland identification expert.  Therefore, the tool was designed to minimize false negatives: 

cases where the tool incorrectly designates wetland as non-wetland.   

 

Application of the tool to a study region with detailed wetland delineations showed that 

the tool correctly identified wetlands nearly 70% of the time, produced false positives 24% of the 

time, and produced false negatives only 6% of the time.  The tool allows decision makers to 

adjust the sensitivity of the wetland identification algorithm in order to decrease false negatives 

at the expense of increasing the fraction of the study area identified as potential wetland.  The 

tool, therefore, allows decision makers to balance trade-offs between the amount of area 

requiring more detailed wetland identification and the frequency with which wetland areas are 

misidentified by the screening tool as false negatives. 

 

 Although the wetland identification tool was shown to be effective, future studies will be 

required to calibrate and validate the tool further using a broader range of application areas.  The 

study recommends that this be done by way of additional corridor analyses to facilitate further 

improvements to the tool. 
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INTRODUCTION 

 

Wetlands are a vital natural feature inherently capable of many beneficial hydrological 

and environmental processes.  Some of these benefits include stormwater runoff control, effluent 

and sediment control, and the provision of habitats for wildlife and plants.  Many wetlands have 

been destroyed or repurposed for agricultural or development purposes (Ouyang et al., 2014).  

Because of this practice, approximately one-half of the original wetlands in the United States no 

longer exist (Klemas, 2011).  The need to protect wetlands is now well known, and wetland 

protection is required by federal law and regulation. 

 

As a result of these requirements, roadway development projects done by state 

departments of transportation (DOTs) often must consider a reasonable number of alternative 

designs within a corridor.  Each of these potential designs is evaluated on a number of criteria, 

one of which is the corridor’s environmental impact, in particular, the area of wetlands expected 

to be impacted during construction.  This process is used to make an informed decision based on 

federal regulations protecting wetlands while also balancing the project’s intended purpose and 

need as well as considerations of cost, existing technology, and logistics.  DOTs must 

sufficiently prove that the selected corridor for a project meets these criteria, showing that it is 

the least environmentally damaging practical alternative (LEDPA) by, among other tasks, 

providing wetland delineations.  The U.S. Army Corps of Engineers evaluates these corridors as 

the governing authority in wetland delineation.  If the LEDPA corridor is selected and a permit is 

issued, the DOT will have federal approval, under Section 404 of the Clean Water Act, for 

construction.  Other federal approvals beyond the LEDPA permit may also be required for some 

projects.  
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There are a number of different wetland types, such as marshes, swamps, bogs, and fens, 

with variations in soils, topography, climate, hydrology, water chemistry, and vegetation based 

on geographic locations (Cowardin et al., 1979; Federal Geographic Data Committee, 2013).  

Despite the large number of wetland types, they all share basic characteristics of soils, 

vegetation, and hydrology that are used to describe wetland areas (U.S. Army Corps of 

Engineers, 1987).  Although detailed identification and field verification methods will always be 

necessary to identify wetlands conclusively, there is the potential to use datasets available 

through federal and state agencies within a geographic information system (GIS) to determine 

potential wetland areas and assist in the wetland identification process.  Coordinating with the 

U.S. Army Corps of Engineers, DOTs can determine if alternative tools are appropriate for 

identifying potential wetlands when field delineations are unavailable.  The National Wetlands 

Inventory (NWI) provides one example of doing such an analysis; however, it is widely 

acknowledged that NWI, being a national-scale data product, often lacks the accuracy required to 

support transportation decision-making. 

 

Current practices for identifying wetlands for LEDPA assessments can range from simple 

methods such as referring to publicly available datasets such as the NWI, to more time-intensive 

efforts such as performing field delineations, to highly advanced and involved remote sensing 

methods such as using image analysis and geospatial software to execute a composite of different 

weighted classification techniques.  These more advanced remote sensing methods for wetland 

identification often use much higher resolution data with a series of classification methods.  As 

the resolution and intensity of the classification technique increase, computation time and cost 

for obtaining the required data resources increase as well.  This can be problematic for 

streamlining projects by slowing the delivery of tasks and increasing costs for high-resolution 

data acquisition. 

 

 

Overview of Wetland Identification Methods 

 

Classification methods used in remote sensing involve identifying features from their 

spectral signature and characteristics.  The classification process will designate certain pixels of a 

raster to a particular class based on the pixels’ spectral properties and/or characteristics (Lu and 

Weng, 2007).  Unsupervised classification finds statistical relationships within the data, whereas 

supervised methods use training data, generally “ground truth” data, to develop a characteristic 

signature for each land cover dataset for a particular region.  To accomplish this, manually 

specified training datasets are designated for the supervised classification algorithm to reference 

(Lu and Weng, 2007; Lu et al., 2003; Tana et al., 2013).  Supervised classification can also use 

object oriented neighborhood analysis to define the vegetative class of a pixel relative to adjacent 

pixels’ classification (Yan et al., 2006).   

 

Many classification and processing software packages are available to assist with the 

classification procedure.  Some of the programs and classification approaches described in 

related literature are presented here.  However, this is not an exhaustive list, and some software 

is capable of using a number of different classification methods.  ERDAS, developed by 

Hexagon Geospatial, is capable of performing both unsupervised and supervised techniques 

using a number of variations of the maximum likelihood and fuzzy logic algorithms (Mwita et 
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al., 2013).  Mwita et al. (2013) classified multispectral images using the ERDAS unsupervised 

Iterative Self-Organizing Data Analysis (ISODATA) method.  Other studies used Esri’s Image 

Classification in ArcGIS.  The Image classifier provides classification methods for Maximum 

Likelihood, Iso Cluster Unsupervised, Class Probability, and Principle Components 

classification.  Trimble’s Definiens Developer (eCognition) is capable of nearest neighbor object 

oriented classification using DELPHI 2, which classifies using a combination of nearest 

neighborhood and fuzzy functions (Nobrega et al., 2011).  Exelis Visual Information Solutions 

(ENVI) can be used for the multispectral imagery geocorrection and atmospheric corrections and 

is capable of a number of classification methods (Sugumaran et al., 2004).  PANCHROMA can 

be used for pan-sharpening and gap-filling imagery (Lee, 2011). 

 

 

Overview of Key Datasets 

 

Many freely available geospatial datasets can be leveraged to identify wetlands.  The 

following geospatial datasets are described in the literature as common datasets used in wetland 

identification procedures: (1) digital elevation models (DEM) and light detection and ranging 

(LIDAR) measurements to characterize wetland topographical aspects, particularly the slope, 

curvature, canopy height, and depression locations; (2) multi- and hyper-spectral satellite and 

aerial imagery data to provide supporting detail about plant vegetation type and soil moisture 

using the specified bands available; (3) National Resources Conservation Service’s Soil Survey 

Geographic (SSURGO) data to characterize soils, particularly hydric soils; (4) the U.S. 

Geographical Survey’s (USGS) National Hydrography Dataset (NHD) to identify bodies of 

water; and (5) the U.S. Fish and Wildlife Service’s NWI (O’Hara, 2002; Stein et al., 2012).   

 

 

Current State of Practice 

 

Many DOTs have explored the use of geospatial software to automate the process of 

identifying potential wetland locations.  The North Carolina DOT focuses on the use of high 

resolution LIDAR, SSURGO, and the National Land Cover Database (NLCD) using ArcGIS to 

automate the process to accomplish this.  Although the North Carolina DOT is focused on 

automating this process, the primary governing dataset used is LIDAR, which lacks the multi- or 

hyper-spectral imagery that has been shown to increase accuracy (Laymon et al., 2001).   

 

The Mississippi DOT uses satellite imagery, aerial photographs, land use and land cover 

(LULC) data, and DEM data within ERDAS Imagine and Definiens’ eCognitio to accomplish 

this.  However, the DOT’s methods make it difficult to automate the process by using multiple 

software packages and requiring users to tend to the workflow from step to step.  This method 

also uses multispectral imagery that is not freely available (Repaka et al., 2004).   

 

The Colorado DOT exercises the most extensive use of multi- and hyper-spectral imagery 

by using National Agriculture Imagery Program (NAIP) Landsat 7 ETM+, Terra ASTER, and 

EO-1 Hyperion/ALI datasets.  Although using three different spectral imageries may increase 

accuracy, this would result in increased computational time costs.  This method also lacks 
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ancillary datasets that have been shown to increase accuracy in wetland identification (Stein et 

al., 2012).   

 

The Michigan DOT has developed a tool using SSURGO datasets and datasets derived 

from multispectral imagery.  Although this tool is close to the level of autonomy and accuracy 

desired, the need for isolated derived datasets as input causes this method to hinder the usability 

of the tool (Shuchman and Court, 2009). 

 

 

 

PURPOSE AND SCOPE 

 

The purpose of this study was to develop a wetland identification tool that makes use of 

freely available geospatial datasets to identify potential wetland locations at a spatial scale 

relevant for transportation corridor assessments.  The tool was to be developed to assist the 

Virginia Department of Transportation (VDOT) in wetland identification over large geographic 

regions.  Studies have shown an opportunity to improve the wetland identification process used 

by DOTs by leveraging newly available remote sensing techniques and GISs (Ghobadi et al., 

2012; Ozesmi and Bauer, 2002).   

 

This study advanced this past work by creating a tool that (1) uses only freely available 

public datasets and (2) automates many of the data processing steps required to transform input 

datasets into a wetland screening map.  If these tools can be used by DOTs for wetland screening 

early in the planning phase of a project, it could offer several benefits such as reducing 

personnel-hours in the field (and associated costs of field studies), targeting expert wetland 

identification efforts on locations with a higher probability of containing wetlands, and 

expediting approval processes in order to streamline project delivery. 

 

 

 

METHODS 

 

Study Area 

 

The study area is an approximate 17-mile corridor in Virginia surrounding U.S. Route 

460 between the town of Zuni and the city of Suffolk (Figure 1).  The analysis was done for the 

26 12-digit hydrologic unit codes (HUCs) that intersect this corridor for a total area of 

approximately 597,780 acres.  The corridor falls within the Coastal Plains, one of five 

physiographic regions in Virginia.  The general wetland composition of the study area was 

forested wetlands and included cypress gum, swamp tupelo, and mineral soil pine flats.    

 

The corridor also falls within the Middle Atlantic Coastal Plain, one of seven ecoregions 

in Virginia.  The U.S. Environmental Protection Agency describes this ecoregion as a flat plain 

with many swampy or marshy areas.  Forest cover consists primarily of loblolly-shortleaf pine 

mixed with patches of oak, gum, and cypress near major streams.  The central and southwestern 

portions of this region are poorly drained soils, whereas the northeastern portions are not as 
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poorly drained.  The central and southwestern regions account for approximately 15% cropland 

coverage, whereas the northeastern can range from 20% to 40% cropland coverage. 

 

 
Figure 1. Site Location for Study Showing U.S. 460 Segment and 12-Digit HUCs 

 

 

Data Preparation 

 

Key datasets useful for wetland identification (Figure 2) were obtained, processed, and 

organized for use in the wetland screening tool.  All datasets were organized into a specific 

structure with a defined naming convention for use by the wetland screening tool (Figure 3).  

Datasets were projected to the same coordinate system and clipped to the same boundary.  This 

study used the NAD 1983 Virginia South State Plane coordinate system, and the data were 

clipped to the previously mentioned 12-digit HUCs.  The datasets and formats required for the 

tool were as follows: DEM as raster data, 100-year floodplain map as polygon vector data, 

Landsat 8 Operational Land Imager (OLI) multispectral satellite imagery as raster data 

(applicable to Bands 2 through 7 from the OLI sensor), SSURGO as polygon vector data, NHD 

as polyline vector data, NLCD as raster data, NWI as polygon vector data, Watershed Boundary 

Dataset (WBD) HUC areas as polygon vector data, and training data as polygon vector data.  

These data are explained here. 
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Figure 2. Key Input Geospatial Datasets (Excluding Landsat 8 Imagery) Used in Wetland Screening Tool
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Figure 3. Image of Data Structure Hierarchy Required by Tool
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Digital Elevation Model (DEM) 

 

DEMs provide topographical information that can be used to derive regions where there 

is a high likelihood of pooled water.  DEMs were downloaded from the USGS’s National Map 

Viewer (USGS, 2016a).  A DEM was created using the 1/9th and 1/3rd arc-sec National 

Elevation Dataset (NED), which correlates to resolutions of approximately 3.14 and 10.22 

meters for the study area, respectively, by downloading and merging tiles for the area of interest.  

The 1/3rd resolution DEM data were resampled to match the 1/9th resolution before merging.  

Although DEM data were readily available for this study’s area of interest, a 7,720-acre section 

found through 3 HUCs was left void because of the lack of 1/9th and 1/3rd resolution elevation 

data.  This can be seen in Figure 3 toward the center of the study’s area of interest.  This section 

could have been supplemented with 1 arc-sec data, but it was left blank and excluded from 

analysis since this study was focused on the use of higher resolution elevation datasets. 

 

Federal Emergency Management Agency (FEMA) Floodplain Maps 

 

Floodplain maps are used to identify areas of water inundation for heavy storm or flood 

events: 100-year floodplain maps were downloaded from FEMA’s Flood Map Service Center 

(FEMA, 2016).  The 1% annual chance flood zone designations of Zone A, Zone AO, Zone AH, 

Zones A1-A30, Zone AE, Zone A99, Zone AR, Zone AR/AE, Zone AR/AO, Zone AR/A1-A30, 

Zone AR/A, Zone V, Zone VE, and Zones V1-V30 are all referred to as 100-year floodplain, or 

base flood, zones.  All other zones categorized 500-year or more flood events.   

 

Landsat 8 Operational Land Imager (OLI) Multispectral Satellite Imagery 

 

 Multispectral imagery is used to classify wetland spectral signatures and derive 

vegetative indices and vegetation analysis transformations from training data provided by image 

analysts.  Landsat 8 OLI imagery and derived products were downloaded from USGS’s Earth 

Resources Observation and Science Center’s Science Processing Architecture On Demand 

interface (USGS, 2016b).  This service provides a multitude of derived datasets that include 

conversion from digital numbers to top of the atmosphere and surface reflectance values using 

the Second Simulation of a Satellite Signal in the Solar System (6S) radiative transfer models 

and atmospheric corrections using MODIS correction routines.  The Landsat 8 satellite follows 

the World Reference System (WRS-2) near-polar, sun-synchronous orbit.  One orbit is 

approximately 99 minutes and provides a temporal resolution of complete coverage of the Earth 

every 16 days.  Table 1 provides the OLI bands, wavelengths, and resolutions.   

 

LandsatLook Viewer was used to identify the appropriate scenes required for this study, 

which is imagery from July 6 and August 14, 2014.  The goal in scene selection is to identify 

dates within or near the wet season.  However, since precipitation rates are evenly distributed 

throughout the year, July was isolated as the time frame of interest because it was historically the 

wettest month for the area of this study.  The Scene IDs are designated as 

LC80140352014187LGN00 located on Path 14 and Row 35 with 10.23% cloud cover and 

LC80150342014226LGN00 located on Path 15 and Row 35 with 0.88% cloud cover.  From 

manual image interpretation, no cloud cover was present over the portion of the imagery 

covering the study area. 
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Table 1. Landsat 8 Operational Land Imager (OLI) Band Details 

Band Wavelength (μm) Resolution (m) Description 

1 0.43-0.45 30 Coastal Aerosol 

2 0.45-0.51 30 Blue 

3 0.53-0.59 30 Green 

4 0.64-0.67 30 Red 

5 0.85-0.88 30 NIR 

6 1.57-1.65 30 SWIR 1 

7 2.11-2.29 30 SWIR 2 

8 0.50-0.68 15 Panchromatic 

9 1.36-1.38 30 Cirrus 

10 10.60-11.19 100 TIRS 1 

11 11.50-12.51 100 TIRS 2 

 

Soil Survey Geographic (SSURGO) Database 

 

The SSURGO database provides valuable information about soil moisture content.  

Wetland regions generally consist of hydric soils.  These hydric soils are provided by the 

SSURGO database in the form of polygon shapefiles.  SSURGO datasets were downloaded from 

the Natural Resources Conservation Service’s Web Soil Survey (U.S. Department of Agriculture, 

2016).  Data were downloaded on a per county basis for the following counties: Isle of Wight 

County (VA093), Prince George County (VA149), Southampton County (VA175), Surry County 

(VA181), Sussex County (VA183), Chesapeake City (VA550), Dinwiddie County (VA653), and 

City of Suffolk (VA800).  The associated Access database (.mdb) was opened and linked to the 

associated tabular folder, which builds and loads data within the database.  After building and 

filling the database was completed, ArcMap was used to import the soilsmu_a_va### polygon 

shapefile.  The “Join” command was used to connect this polygon with data from the component 

table.  Symbology was altered to represent the hydricating parameter within the component table.  

This parameter distinguishes hydric soils from non-hydric soils, which can be declared as Yes, 

No, or Unknown.  This symbolized data layer was exported to retain the hydric classification 

from the join.  Each of the county layers was then merged into a single polygon shapefile. 

 

Other National-Scale Datasets 

 

The USGS National Map Viewer was also used to obtain the statewide NHD, which 

provides stream location data found in the NHDFlowlines subset.  The NLCD was downloaded 

from the Multi-Resolution Land Characteristics Consortium (MRLC, 2016).  The NWI for the 

entire state of Virginia was downloaded from the U.S. Fish and Wildlife Service (2016).  Finally, 

the WBD for the entire United States was downloaded from the USGS (USGS, 2016c) where the 

12-digit HUCs covering this study’s area of interest were exported into a new shapefile. 

 

Training Data 

 

Training data were manually created with the use of aerial imagery and the NWI (Figure 

3).  By the use of these data, known wetland areas were delineated throughout the study area to 

encompass a variety of wetland types and characteristics.  These wetland areas were used to 

“train” or develop the classification algorithm.  The classification algorithm makes use of 

information about wetland signatures extracted from each of the ancillary datasets within the 
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areas designated as wetlands.  Figure 4 shows a sample location of the training data depicting 

inland wetlands as green, river wetlands as purple, and non-wetlands as yellow. 

 
Figure 4. Sample Location of Training Data Depicting Inland Wetlands As Green, River Wetlands As Purple, 

and Non-Wetlands As Yellow.  Training data were used to train the classification algorithm.   

 

Verification Data 

 

VDOT provided wetland areas created by wetland scientists for two corridor alternatives 

for U.S. 460 within the study area.  These data were considered to be ground truth and used to 

assess the accuracy of the screening tool.  The data were manually delineated by a trained image 

analyst using color-infrared imagery, land cover maps, NWI, SSURGO, NHD, LIDAR-derived 

DEM, and historical orthophotography, where analysts would pan the entire corridor looking at 

the visual cues indicating an area is wetland.  

 

 

Tool Algorithm 

 

Because Esri’s ArcGIS software is widely used and available to VDOT through a site 

license, it was selected as the platform for the development and incorporation of the potential 

wetland identification tool.  To automate the geoprocessing steps, researchers used the 
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ModelBuilder tool in ArcGIS.  ModelBuilder links a number of tools to allow users to run a 

series of processes without requiring user input. 

 

Although ArcGIS is capable of a number of classification methods, Maximum Likelihood 

was selected as it is the more accepted method for classification.  The Maximum Likelihood 

classification requires a manually generated training dataset in order for the classification to 

build a spectral profile for land cover types.  Alternative classification methods include Iso 

Cluster, which is capable of classification without training data; however, output is organized 

into statistically clustered groups that then need intensive manual post-processing to merge 

clusters into appropriate land use / land class categories.  The tool uses built-in ArcMap 

functions to execute a workflow that results in a final land use / land cover raster that identifies 

wetland locations. 

 

Figure 5 depicts the overall workflow used by the wetland screening tool.  The tool is 

segmented into four main sections: satellite imagery processing, DEM raster processing, riparian 

zone processing, and tertiary processing for all other ancillary datasets. 

 

 
Figure 5.  Flow Diagram for Potential Wetland Identification Tool.  Figures 6 through 8 provide zoom-in 

views of the key components of the workflow that are highlighted with dashed lines in this figure.   

 

The satellite imagery processing section (Figure 6) consists of the generation of three 

descriptive indices created from the use of a Tasseled Cap Transformation on the Landsat 8 OLI 

imagery for Bands 2 through 7.  Bands 2, 3, and 4 are channels found in the visible spectrum, 

and Bands 5, 6, and 7 are channels found in the shortwave infrared and near infrared spectrum.  

The tool uses these bands and condenses them into the three indices, which describe the 

greenness, wetness, and brightness of an area.  All of the rasters were created using Raster 

Calculator and Equations 1 through 3 describing the weighted sum of comments method for 
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generating these rasters.  Equations 1 through 3 describe the operations performed in the raster 

calculator tools in Figure 6.  Table 2 provides the scalars used for weighting each band (Hasan 

Ali Baig et al., 2014). 

𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =  ∑(𝑤1𝑖 ∗ 𝑏𝑎𝑛𝑑𝑖)

7

𝑖=2

 

 

[Eq. 1] 

𝐺𝑟𝑒𝑒𝑛𝑛𝑒𝑠𝑠 =  ∑(𝑤2𝑖 ∗ 𝑏𝑎𝑛𝑑𝑖)

7

𝑖=2

 

 

[Eq. 2] 

𝑊𝑒𝑡𝑛𝑒𝑠𝑠 =  ∑(𝑤3𝑖 ∗ 𝑏𝑎𝑛𝑑𝑖)

7

𝑖=2

 

 

[Eq. 3] 

where w1i, w2i, and w3i are the Tasseled Cap Transformation weighting factors for brightness, 

greenness, and wetness, respectively, for bandi , and bandi is the spectral signature value for 

bandi at a given pixel location. 

 

 
Figure 6. Satellite Imagery Processing 
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Table 2. Tasseled Cap Transformation (TCT) Coefficients for Landsat 8 OLI Sensor 

Landsat 8 Blue Green Red NIR SWIR1 SWIR2 

TCT Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Brightness  0.3029  0.2786  0.4733 0.5599  0.5080  0.1872 

Greenness -0.2941 -0.2430 -0.5424 0.7276  0.0713 -0.1608 

Wetness  0.1510  0.1973  0.3283 0.3407 -0.7117 -0.4559 

NIR = near infrared; SWIR = shortwave infrared. 

 

The DEM processing section (Figure 7) uses DEM data to compute a sink raster, which 

identifies depressions throughout the topography.  The DEM is first conditioned using 

NHDFlowline converted to a raster.  The NHDFlowline raster is multiplied by a large value, in 

this case 100 feet, and is subtracted from the DEM.  This process is known as burning in streams.  

The Fill tool is then used to fill any depressions within the burned DEM.  The filled and original 

DEMs are then used in Raster Calculator; pixels with changes in elevation are designated a value 

of 1, and pixels with the same elevation are designated a value of 0.  The Fill tool is generally 

used to remove small imperfections in topography for flow path analysis; however, here it is 

used to identify depressed areas.  Burning in streams is required to avoid cases where Fill may 

consider an extremely large area a depression.  For example, a bridge crossing a stream would 

register at a higher elevation than the stream it is crossing and the Fill tool would fill all 

contributing areas up to the bridge, which would incorrectly lead to identifying these areas as 

depressions. 

 

The riparian zone processing section (Figure 8) creates a buffer of 100 feet surrounding 

each NHDFlowline and converts the polygons to a raster, where Raster Calculator was then used 

to compute a binary raster where pixels within the 100-foot riparian zone are designated a value 

of 1 and all other areas are designated a value of 0.  This process assumes wetlands are more 

likely to be within the riparian zone around rivers. 

 

All tertiary processing in the overall workflow revolves around the creation of binary 

rasters that represent wetland traits.  The tool assumes that the DEM is the highest resolution 

raster and is used as a processing constraint for the resolution, cell size, snap raster, and 

processing extent for all tools that involve conversion of vector data to raster data or the 

resampling of lower resolution data.  FEMA data are converted from polygon to raster.  Raster 

Calculator is then used to compute a binary raster where pixels within the floodplain are 

designated a value of 1 and all other areas a value of 0.  SSURGO data are converted from 

polygon to raster.  Raster Calculator is then used to compute a binary raster where pixels 

containing hydric soils are designated a value of 1 and non-hydric soils a value of 0.  NWI data 

are converted from polygon to raster.  Raster Calculator is then used to compute a binary raster 

where pixels containing wetland areas delineated by the U.S. Fish and Wildlife Service are 

designated a value of 1 and non-wetland areas a value of 0.  The NLCD is incorporated as is.  

User-generated training data are converted from polygon to raster, specifying pixels with the 

appropriate land use land cover designation specified. 
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Figure 7. DEM Processing Workflow 
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Figure 8. Riparian Processing Workflow 
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After all previously mentioned processing is complete, the tool composites each of these 

rasters into a comprehensive image, with the exception of the training data and NWI data.  The 

rasterized training areas and composite image are then used to develop signatures for the 

particular known land classes found throughout the image.  This builds a library of spectral 

signatures that is then used for the Maximum Likelihood classification; in this study’s case, the 

land cover designations are river wetlands, inland wetlands, and non-wetlands.  The result of 

these operations is a land use land cover raster mapping the user-specified land classes and a 

confidence raster describing the certainty of the Maximum Likelihood classification for 14 levels 

of confidence.  The tool then merges the river wetlands and inland wetlands into one class and 

uses Raster Calculator to include NWI-designated wetlands.   

 

 

RESULTS AND DISCUSSION 

 

Model Prediction Validation 

 

Figure 9 depicts two datasets that contain mapped wetlands: this study’s model output 

and VDOT-identified wetlands resulting from a survey by trained image analysts.  The color 

depictions for each of the datasets are as follows: model output for wetlands is green, model 

output for non-wetlands is beige, and the VDOT-delineated wetlands have a red outline.   

 

 
Figure 9. Survey vs. Model Predicted Wetlands 
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The model performed well for the region shown in Figure 10, with a low percentage of 

false negatives.  However, there were still areas where false positives appeared.  The purple 

outline identifies a false negative where the model predicted no wetland but the VDOT 

delineation identified a wetland.  The blue outline identifies a false positive where the model 

predicted a wetland but the VDOT delineation did not identify a wetland.  In terms of this 

study’s goals of creating a potential wetland identification map that can be used to focus survey-

based identification efforts, false positives are less concerning than false negatives.  It is 

important to note that the VDOT data extend only to the associated corridor; therefore, model 

verification does not extend beyond the corridor extent. 

 
Figure 10.  Grouped Confidence Raster 

 

Confidence Level 

 

Figure 10 presents the confidence raster associated with the model predictions.  This 

raster is generated through ArcGIS’s Maximum Likelihood classification and can be used to 

supplement the model projections for decision support applications.  This raster depicts the 

Maximum Likelihood classification’s confidence in classification of each particular pixel.  The 

level of confidence ranges from values of 1 to 14, where lower values represent lower confidence 

and higher values represent higher confidence.  These discrete levels were combined into four 

levels of confidence: none, low, moderate, and high.  None spans values 1 to 2.9, low spans 

values 3 to 5.9, moderate spans values 6 to 9.9, and high spans values 10 to 14.   
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Accuracy Assessment 

 

Figure 11 provides a comparison of the model output to VDOT-mapped wetlands, which 

are considered the ground truth for the accuracy assessment.  The figure was generated by use of 

a raster difference calculation.  For both the model output and VDOT-mapped wetlands, wetland 

locations are designated with a value of 1 and non-wetland areas with a value of 0.  Raster 

Calculator was used to subtract the VDOT binary rasters from the model output binary raster.  

This results in false negatives being assigned a value of −1, shown in red; false positives being 

assigned a value of 1, shown in blue; and agreement between the two rasters being assigned a 

value of 0, shown in green.   

 

The tool is configured to minimize false negatives (predicting no wetland when there is in 

fact a wetland) in order to focus survey efforts for wetland delineation on areas that have 

potential wetlands.  For high levels of accuracy in identifying as many actual wetland locations 

as possible, reducing the number of false negatives is extremely important, whereas minimizing 

the number of false positives is much less important.  The tool can be reconfigured to meet other 

objectives, such as minimizing both false positives and false negatives if simple prediction of 

actual wetlands is the primary need of the decision maker. 

 
Figure 11. Confidence Levels for False Negative Model Predictions 
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In Figure 12, the bottom left images are focused on two prominent problem areas found 

within the model output where false negatives were high.  Future work should be directed to 

achieving a better understanding of the reason for these clustered regions of false negative 

predictions.  Potential reasons for these errors include missing information in the wetland 

identification algorithm.  If so, there may be unique characteristics of these locations that could 

be incorporated into the prediction tool to remove these false negative predictions.  It is also 

possible that there have been recent land changes in these regions that are not reflected in the 

underlying datasets used in the prediction tool.   

 
Figure 12.  Locations of False Negative, Agreement, and False Positive Predictions Between the Wetland 

Screening Tool and a More Detailed Wetland Survey Effort 

  

Table 3 outlines the total area for false negatives, false positives, and agreement pixels.  

The tool agreed with the VDOT wetland delineations for 69.3% of the study area.  For the 

remaining portion of the study region, the majority of this area included false positive errors 

(24.3%) where the model predicted a wetland but no wetland existed according to the VDOT 

delineation.  Only 6.4% of the study region had false negatives.  Again, because the primary goal 

of the tool is to minimize false negatives, this 6.4% is an important performance metric for the 

model.  If this tool had been used as a preliminary screening tool that focused wetland 

delineation efforts in potential wetland areas identified by the tool, then although this would 

streamline delineation efforts by reducing the area required for wetland delineation, 6.4% of the 

wetlands in the study area would have been missed in the original wetland impact estimate, 

potentially affecting decisions that are predicated on minimizing wetland impacts.   
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Table 3. False Negative, Agreement, and False Positive Areas for Both Corridors 

Classification Result Area (acre) Percent Area (%) 

False negatives 523 6.4 

Agreement 5,669 69.3 

False positives 1,984 24.3 

 

Using Model Predictions With Confidence Level 

 

Figure 11 presents a composite of the model predictions with the confidence level added 

for false negative areas.  The confidence level provides important information to decision makers 

that can be used when determining the benefits and costs of focusing wetland delineation efforts.  

For example, if a high level of confidence is needed, then the decision maker may wish to survey 

all pixels that have a minimal, low, or moderate confidence level, even if the tool determined 

these pixels to be non-wetland areas.  This would increase the total area that required surveying, 

therefore increasing the cost and time required to complete the surveying, but it would reduce the 

number of missed wetland areas.  Table 4 provides the area within each confidence level for the 

false negative predictions along with its percentage of the total site area and the percentage of 

false positives in that confidence level compared to the total site area.  These data show that if all 

non-wetland “minimal confidence” and “low confidence” regions were included in the wetland 

delineation survey, it would have resulted in the need to survey 2,584 more acres (31.6% of the 

study region).  At the same time, it would have reduced the false negatives from 6.4% of the 

study region to 2.9% of the study region.   

 
Table 4.  Confidence Levels for False Negative Model Predictions 

Classification 

Confidence 

 

Area (acre) 

 

Percent Area (%) 

Percent False Positives 

(%) 

Minimal confidence 781 9.5 1.90 

Low confidence 1,803 22.1 1.56 

Moderate confidence 1,834 22.4 2.86 

High confidence 123 1.5 0.09 

 

Building on this idea, Figure 13 summarizes this trade-off between reducing the number 

of false negative predictions and increasing the area of the study region that must be surveyed.  

Given that the area of the region that must be surveyed is a surrogate for the cost and time 

required to complete the wetland delineation, this figure illustrates the trade-off between error 

(false positives) and cost (survey area) for the study region.  Given this information, a decision 

maker may elect to reduce the percentage of false negatives from 6.4% to 4.5% by surveying an 

additional 9.5% of the project site area.  The additional 9.5% of the site area that would be 

surveyed are pixels that were classified as non-wetland but with lower confidence.  This 

relationship between error and cost is likely to be specific to this study region, and further work 

applying the wetland identification tool and performing surveyed wetland delineations for other 

regions would be necessary to gain insight into the regional variability of the error vs. cost 

relationship.  If a general relationship were found, it could be applied for sites without survey 

data to foster understanding of the potential trade-off between error and cost for the wetland 

identification tool.   
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Figure 13. Relationship Between Level of Certainty in False Negative Predictions and Increased Area That 

Must Be Investigated Using More Detailed Wetland Identification Procedures 

 

 

 

CONCLUSIONS 

 

 The automation of current wetland identification techniques using freely available datasets 

to isolate target sites for on the ground wetland delineation shows great promise.  With this 

approach, it was possible to obtain results in agreement with those from a trained image 

analyst’s method for nearly 70% of the study region.   

 

 Because the wetland identification tool developed in this study was configured to minimize 

false negatives (predicting no wetland when there is in fact a wetland), the majority of 

disagreement between the results with the tool and the trained image analyst’s method 

comprised cases where the tool identified a wetland and the analyst’s method did not (false 

positives).  Only about 6% of the study region resulted in false negatives. 

 

 The tool’s confidence raster provides important insights into the predictive capability of the 

tool and potential areas for improvement.  For example, the confidence raster indicates that 

the tool is easily able to identify lakes, rivers, and ocean pixels, which can be attributed to 

their characteristic spectral response of being highly absorptive in the near infrared bands, 

which is a stark contrast to other land cover types.  Urbanized areas also generally had higher 

classification confidence levels because of their distinctive spectral response.   

 

 The coarse spatial resolution of Landsat 8 imagery appears to be the restrictive dataset that 

contributes to the tool’s inaccuracy.  The pixelated mapping of the model output edges 

indicates that the multispectral imagery component of the model is governing, which is 

apparent in this imagery because of its coarse resolution in comparison to the other model 

components.  Unfortunately, because of a poor spatial resolution of 30 meters, these areas 

can account for some error within the tool’s classification.  The spectral response for a single 
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pixel is associated with an area of 900 square meters s, which may include a number of 

different land cover types, resulting in a pixel value that is not representative of this area and 

incorrect classification. 

 

 Although the wetland screening tool developed in this study was effective for the case study 

project, future studies will be needed to calibrate and validate the tool further using a 

broader range of application areas.   

 

 

 

RECOMMENDATIONS 

 

1. VDOT’s Environmental Division, through its Environmental Research Advisory Committee, 

should decide if a comparison of the proposed model and VDOT’s consultant model (using 

photointerpretation) is appropriate and feasible (considering the proprietary nature of the 

photointerpretation model).  The comparison could be done on either an existing or future 

corridor assessment and should concentrate on the accuracy, costs, and time requirements 

associated with each method. 

 

2. VDOT’s Environmental Division should continue to explore potential areas of improvement 

in data and acquisition methods that could be used in the wetland screening process to 

improve the predictive capabilities of whatever method is ultimately used to identify 

wetlands.  In addition to freely available data as used in this study, there are some 

commercially available data products that may be worth exploring to improve the tool’s 

predictive capabilities.  For example, GeoEye’s IKONOS satellite currently can provide 

multispectral imagery with resolutions up to 3.2 meters, but the data come at a cost (Satellite 

Imaging Corporation, 2016).  Other data acquisition methods include the use of unmanned 

aerial vehicles in addition to satellites for data collection; LIDAR-derived digital elevation 

model datasets; and additional satellite-derived longer wavelength datasets such as that 

collected by the Soil Moisture Active Passive satellite (NASA, 2016).  

 

 

 

BENEFITS AND IMPLEMENTATION 

 

Benefits 

 

Performing a direct comparison between the newly developed and currently used wetland 

identification methods will help VDOT select the most appropriate means of estimating the 

wetland impacts resulting from specific alignments as a part of corridor development studies.  

This will allow for the optimization of wetland identification methods used based on accuracy, 

cost, and timeliness, ultimately resulting in fewer problems and delays associated with alignment 

selection.     

 

In addition, because of the rapid improvements in data acquisition technology, additional 

and better datasets will undoubtedly become available in the near future.  Increases in spatial and 
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spectral resolution are coming and, as a result, may also parallel increases in resolution with 

freely available imagery.  In addition, newer satellites are offering hyperspectral imagery, which 

will drastically increase the number of available bands, giving the ability to develop more 

continuous spectral profiles.  Keeping up to date on these new datasets will help make certain 

that VDOT continues to use the best methods available for corridor-level wetland identification. 

 

 

Implementation 

 

 VDOT’s Environmental Division will consider (1) the merits of comparing the wetland 

identification method developed in this study to its current method, and (2) the need to explore 

additional data acquisition methods through the project prioritization process of its 

Environmental Research Advisory Committee.  This process will take place in November 2016.  

If it is determined that this additional analysis is warranted, it could be initiated as soon as spring 

2017. 
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